Set seed and create Figure 3a for the Feedback task DLPFC ROI:
In [2]:
# set seedset.seed(1234)# calculate difference mfg_learning vs. mfg_applicationdata_feedback <- feedbackdata_feedback$dif <- data_feedback$mfg_learning - data_feedback$mfg_application# Estimate correlationsfeedback_fig <-estim_corr(data = data_feedback,vars_of_interest =c("dif", "age"),sample_size =20:271, k =1000, name ="A. Feedback DLPFC corr. with age")# plot figure 3afeedback_fig$fig_corr
Plot Figure 4a for the Feedback task DLPFC ROI:
In [3]:
# plot figure 4afeedback_fig$fig_corr_nozero
Set seed and create Figure 3b for the Gambling task NAcc ROI:
In [4]:
# set seedset.seed(1234)# Estimate correlationsgambling_fig <-estim_corr(data = gambling, vars_of_interest =c("lnacc_self_winvsloss", "age"), sample_size =20:221, k =1000, name ="B. Gambling NAcc corr. with age")# plot figure 3bgambling_fig$fig_corr
Plot Figure 4b for the Gambling task NAcc ROI:
In [5]:
# plot figure 4bgambling_fig$fig_corr_nozero
Set seed and create Figure 3c for the Self-evaluations task mPFC ROI:
In [6]:
# set seedset.seed(1234)# calculate difference mpfc_self - mpfc_controldata_self <- self_evaldata_self$dif <- data_self$mpfc_self - data_self$mpfc_control# Estimate correlationsselfeval_fig <-estim_corr(data = data_self,vars_of_interest =c("dif","age"),sample_size =20:149, k =1000, name ="C. Self-evaluations mPFC corr. with age")# plot figure 3cselfeval_fig$fig_corr
Plot Figure 4c for the Self-evaluations task mPFC ROI:
In [7]:
# plot figure 4cselfeval_fig$fig_corr_nozero
Set seed and create Figure 3D for the Gaining for self task NAcc ROI:
In [8]:
# set seedset.seed(1234)# calculate difference nacc_selfgain vs. nacc_bothnogaindata_vicar <- vicar_chardata_vicar$dif <- data_vicar$nacc_selfgain - data_vicar$nacc_bothnogain# Estimate correlationsvicar_char_fig <-estim_corr(data = data_vicar, vars_of_interest =c("dif", "age"),sample_size =20:156, k =1000, name ="D. Gaining self NAcc corr. with age")# plot figure 3dvicar_char_fig$fig_corr
Plot Figure 4d for the Gaining for self task NAcc ROI:
In [9]:
# plot figure 4dvicar_char_fig$fig_corr_nozero
Plot a mock figure with similar aesthetics to create an overall ggplot legend.
The only purpose of this code chunk is to make a simple overall legend to show that in light blue a subset of the individual permutations is shown and in purple the overall values. The original legends with permutation numbers will not be shown in the overall figure to create a cleaner look. The approach taken here was to use a simple mock ggplot figure and then use the ggpubr package to isolate the legend and display the legend together with the 4 actual plots.
In [10]:
# make simple mock data to create overall legendlegend_data <-tibble(legend =c("10 permutations","Overall"), N =1:2, scores =c(1.6, 1.8),lower =c(.4, .6), upper =c(2.8, 3))# factorize legend and Nlegend_data$legend <-factor(legend_data$legend)legend_data$N <-as.factor(legend_data$N)# plot data to produce legendfigure_legend <- ggplot2::ggplot(data = legend_data, ggplot2::aes(x = .data$N, y = .data$scores,colour = .data$legend,size = .data$legend) ) + ggplot2::theme_classic() + ggplot2::geom_point(position = ggplot2::position_dodge(.8), ggplot2::aes(x = .data$N, y = .data$scores,colour = .data$legend,size = .data$legend)) + ggplot2::scale_size_manual(values =c(2, 4)) + ggplot2::geom_errorbar(ggplot2::aes(ymin = .data$lower, ymax = .data$upper),linewidth = .5, position = ggplot2::position_dodge(.1)) + ggplot2::scale_linetype_manual(values =c(1, 6)) + ggplot2::scale_color_manual(values =c("#009E73", "#E69F00") ) +theme(legend.title=element_blank())# use ggpubr get_legend to plot legend onlyleg <- ggpubr::get_legend(figure_legend)
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
simple_legend <- ggpubr::as_ggplot(leg)# show the simple overall legendsimple_legend
Plot Figure 3 (4 data sets combined):
In [11]:
# plot figure 3 using patchwork libraryfeedback_fig$fig_corr +theme(legend.position ="none") + gambling_fig$fig_corr +theme(legend.position ="none") + selfeval_fig$fig_corr +theme(legend.position ="none") + vicar_char_fig$fig_corr +theme(legend.position ="none") +inset_element(simple_legend, left =1.7, bottom =3.8, right =0, top =0, on_top = T, align_to ='full')