Set seed and create Figure 3a for the Feedback task DLPFC ROI:
In [2]:
# set seedset.seed(1234)# calculate difference mfg_learning vs. mfg_applicationdata_feedback <- feedbackdata_feedback$dif <- data_feedback$mfg_learning - data_feedback$mfg_application# Estimate correlationsfeedback_fig <-estim_corr(data = data_feedback,vars_of_interest =c("dif", "age"),sample_size =20:271, k =1000, name ="A. Feedback DLPFC corr. with age")# plot figure 3afeedback_fig$fig_corr
Plot Figure 4a for the Feedback task DLPFC ROI:
In [3]:
# plot figure 4afeedback_fig$fig_corr_nozero
Set seed and create Figure 3b for the Gambling task NAcc ROI:
In [4]:
# set seedset.seed(1234)# Estimate correlationsgambling_fig <-estim_corr(data = gambling, vars_of_interest =c("lnacc_self_winvsloss", "age"), sample_size =20:221, k =1000, name ="B. Gambling NAcc corr. with age")# plot figure 3bgambling_fig$fig_corr
Plot Figure 4b for the Gambling task NAcc ROI:
In [5]:
# plot figure 4bgambling_fig$fig_corr_nozero
Set seed and create Figure 3c for the Self-evaluations task mPFC ROI:
In [6]:
# set seedset.seed(1234)# calculate difference mpfc_self - mpfc_controldata_self <- self_evaldata_self$dif <- data_self$mpfc_self - data_self$mpfc_control# Estimate correlationsselfeval_fig <-estim_corr(data = data_self,vars_of_interest =c("dif","age"),sample_size =20:149, k =1000, name ="C. Self-evaluations mPFC corr. with age")# plot figure 3cselfeval_fig$fig_corr
Plot Figure 4c for the Self-evaluations task mPFC ROI:
In [7]:
# plot figure 4cselfeval_fig$fig_corr_nozero
Set seed and create Figure 3D for the Gaining for self task NAcc ROI:
In [8]:
# set seedset.seed(1234)# calculate difference nacc_selfgain vs. nacc_bothnogaindata_vicar <- vicar_chardata_vicar$dif <- data_vicar$nacc_selfgain - data_vicar$nacc_bothnogain# Estimate correlationsvicar_char_fig <-estim_corr(data = data_vicar, vars_of_interest =c("dif", "age"),sample_size =20:156, k =1000, name ="D. Gaining self NAcc corr. with age")# plot figure 3dvicar_char_fig$fig_corr
Plot Figure 4d for the Gaining for self task NAcc ROI:
In [9]:
# plot figure 4dvicar_char_fig$fig_corr_nozero
Plot a mock figure with similar aesthetics to create an overall ggplot legend.
The only purpose of this code chunk is to make a simple overall legend to show that in light blue a subset of the individual permutations is shown and in purple the overall values. The original legends with permutation numbers will not be shown in the overall figure to create a cleaner look. The approach taken here was to use a simple mock ggplot figure and then use the ggpubr package to isolate the legend and display the legend together with the 4 actual plots.
In [10]:
# make simple mock data to create overall legendlegend_data <-tibble(legend =c("10 permutations","Overall"), N =1:2, scores =c(1.6, 1.8),lower =c(.4, .6), upper =c(2.8, 3))# factorize legend and Nlegend_data$legend <-factor(legend_data$legend)legend_data$N <-as.factor(legend_data$N)# plot data to produce legendfigure_legend <- ggplot2::ggplot(data = legend_data, ggplot2::aes(x = .data$N, y = .data$scores,colour = .data$legend,size = .data$legend) ) + ggplot2::theme_classic() + ggplot2::geom_point(position = ggplot2::position_dodge(.8), ggplot2::aes(x = .data$N, y = .data$scores,colour = .data$legend,size = .data$legend)) + ggplot2::scale_size_manual(values =c(2, 4)) + ggplot2::geom_errorbar(ggplot2::aes(ymin = .data$lower, ymax = .data$upper),linewidth = .5, position = ggplot2::position_dodge(.1)) + ggplot2::scale_linetype_manual(values =c(1, 6)) + ggplot2::scale_color_manual(values =c("#009E73", "#E69F00") ) +theme(legend.title=element_blank())# use ggpubr get_legend to plot legend onlyleg <- ggpubr::get_legend(figure_legend)
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
simple_legend <- ggpubr::as_ggplot(leg)# show the simple overall legendsimple_legend
Plot Figure 3 (4 data sets combined):
In [11]:
# plot figure 3 using patchwork libraryfeedback_fig$fig_corr +theme(legend.position ="none") + gambling_fig$fig_corr +theme(legend.position ="none") + selfeval_fig$fig_corr +theme(legend.position ="none") + vicar_char_fig$fig_corr +theme(legend.position ="none") +inset_element(simple_legend, left =1.7, bottom =3.8, right =0, top =0, on_top = T, align_to ='full')
Estimates of Pearson’s correlation between age and the task effect for five different sample sizes (starting with \(N = 20\), then 1/5th parts of the total dataset). For each sample size 10 randomly chosen HDCI’s out of the 1000 HDCI’s computed are displayed (in green, permutation numbers used are displayed to the right of each subfigure). The average estimate with credible interval summarizing the 1000 HDCI’s for each sample size are plotted in orange. DLPFC = dorsolateral prefrontal cortex; mPFC = medial prefrontal cortex; NAcc = nucleus accumbens. Age is modeled as linearly increasing or decreasing.
For each task, for five different sample sizes (starting with \(N = 20\), then 1/5th parts of the total dataset), the proportion of intervals not containing the value 0 is plotted in orange. Age is modeled as linearly increasing or decreasing.
Extract numbers to produce table 3:
In [13]:
# first extract tibble from results (select mean only)feedback_sum <-as_tibble(feedback_fig$tbl_select) %>% dplyr::filter(permutation =="Overall")gambling_sum <-as_tibble(gambling_fig$tbl_select) %>% dplyr::filter(permutation =="Overall")selfeval_sum <-as_tibble(selfeval_fig$tbl_select) %>% dplyr::filter(permutation =="Overall")gaining_sum <-as_tibble(vicar_char_fig$tbl_select) %>% dplyr::filter(permutation =="Overall")