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Task-related functional MRI (fMRI) studies need to be properly powered with
an adequate sample size to reliably detect effects of interest. But for most fMRI
studies, it is not straightforward to determine a proper sample size using power cal-
culations based on published effect sizes. Here, we present an alternative approach
of sample size estimation with empirical Bayesian updating. First, this method
provides an estimate of the required sample size using existing data from a similar
task and similar region of interest. Using this estimate researchers can plan their
research project, and report empirically determined sample size estimations in their
research proposal or pre-registration. Second, researchers can expand the sample
size estimations with new data. We illustrate this approach using four existing
fMRI data sets where Cohen’s d is the effect size of interest for the hemodynamic
response in the task condition of interest versus a control condition, and where a
Pearson correlation between task effect and age is the covariate of interest. We
show that sample sizes to reliably detect effects differ between various tasks and
regions of interest. We provide an R package to allow researchers to use Bayesian
updating with other task-related fMRI studies.

1 Introduction

Since its emergence, functional magnetic resonance imaging (fMRI) has provided unprece-
dented opportunities to study functional brain development during childhood and adolescence
by scanning children from the age of four years onward. There is great progression in the
assessment of neural functional growth using cross-sectional and longitudinal assessments of
cognitive, social and affective processes across the full range of childhood to adulthood. De-
spite the advancements in the ability to study the developing brain in vivo using fMRI, recent
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years have seen an increased concern about the replicability of scientific findings in general
and particularly in psychology and cognitive neuroscience (Bishop 2019; E. T. Klapwijk et al.
2021; Munafò et al. 2017; Poldrack et al. 2017; see Marek et al. 2022 for a similar concern for
resting-state functional connectivity and structural MRI data sets).

Low statistical power due to small sample sizes is arguably one of the main reasons for lower
than desired replicability of study results. Statistical power is the probability that a study will
reject the null hypothesis when it is false, that is, when there is a non-zero effect (e.g., Cohen’s
d or Pearson’s correlation) in the population of interest. Power is determined by the size of
the effect, the alpha level chosen, and the size of the sample (Cohen 1992). The smaller each
of effect size, alpha level, and sample size are, the lower the power. Since many psychological
phenomena consist of relatively subtle, small effects (Funder and Ozer 2019; Gignac and
Szodorai 2016; Yarkoni 2009), the main source for increasing power, and over which researchers
have a reasonable degree of control, is the sample size (given limited flexibility of the alpha
level). Despite the need for well-powered studies to reliably detect effects of interest, empirical
reports have shown that most cognitive neuroscience and fMRI studies are underpowered due
to small sample sizes (Button et al. 2013; Maxwell 2004; Nord et al. 2017; Poldrack et al. 2017;
Szucs and Ioannidis 2017; Turner et al. 2018). With developmental populations, sufficiently
large sample sizes might be even harder to establish because of the challenges in recruitment
and testing of young participants (Achterberg and Meulen 2019; E. T. Klapwijk et al. 2021).

Recently, well-coordinated efforts and funding have led to several large-scale projects that
collect developmental task-related fMRI data with larger sample sizes. These projects have
the potential to resolve the problem of power with sample sizes in the thousands, such as the
IMAGEN study (𝑁 ≈ 2, 000) (Schumann et al. 2010), the Philadelphia Neurodevelopmental
Cohort (𝑁 ≈ 1, 000) (Satterthwaite et al. 2016), the Human Connectome Project in Devel-
opment (HCP-D; 𝑁 ≈ 1, 300) (Somerville et al. 2018), and the Adolescent Brain Cognitive
Development (ABCD) study (𝑁 ≈ 11, 000) (Casey et al. 2018). The leap forward made with
this wealth of high-powered, mostly publicly available data can hardly be overstated, given
that they provide an important open research tool for researchers across the globe.

However, most fMRI studies are carried out by individual research groups in much smaller
samples. These labs have the important advantage over large scale cohort studies of having
opportunities to pursue new scientific questions, for example using novel paradigms. It is
also vital that the findings of such studies are replicable and meaningful, meaning that these
studies should be properly powered, also without sample sizes in the range of large multi-lab
studies. The main issue with power analysis is that the effect size in the population of interest
is unknown. One option is to use effect sizes reported in the literature of the research area
at hand. But these effect sizes are often inflated due to publication bias (Gelman and Carlin
2014; Ioannidis 2005; Open Science Collaboration 2015; Wicherts et al. 2016; Yarkoni 2009).
Therefore, calculating power based on published effect sizes usually underestimates the sample
size needed to re

This paper will present a novel method to determine the required sample size for fMRI studies
based on existing (i.e., already collected) data using Bayesian updating (Rouder 2014). For
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novel paradigms with no existing data available, the method can also be used to monitor
sample size requirements during data collection. Specifically, the approach will determine
the proportion of the already collected data that is needed to get a desired credible interval
(the Bayesian counterpart of the confidence interval). This will provide an estimate of the
percentage of cases for which the credible interval is expected to be in the desired range (e.g.,
the interval should not contain the value 0 for the parameter of interest). This in turn gives
us an estimate of the sample size needed for a certain level of power. The current paper
will provide examples (including an R package) for two effect sizes: Cohen’s d and Pearson’s
correlation. The sample size determined using existing data is valuable when designing a new
research project and when justifying sample sizes in a pre-registration or in proposals sent to
a (medical) ethical committee.

We will illustrate sample size determination using existing data sets and tasks that are currently
widely used in the developmental fMRI literature, specifically cognitive control, reward activity,
and social-cognitive processing (see Table 1 for an overview) based on existing data from our
own lab. It will be determined how large the sample size should be to detect anon-zero Cohen’s
d value, such that 95% does not contain the value zero for a specific condition effect (e.g., brain
activity during feedback processing versus rule application). Most prior developmental fMRI
studies addressed the question whether an effect linearly increases or decreases with age (Crone
and Steinbeis 2017). We therefore also determine the sample size needed to detect a Pearson
correlation of an effect with linear age that is larger than zero. In the next sections, we
will first introduce Bayesian updating, the highest density credible interval, and sample size
determination. Next, we will provide examples using existing data from four fMRI studies
(Braams et al. 2014; Peters and Crone 2017; Spaans et al. 2023; Cruijsen et al. 2023), and
illustrate sample size determination using these examples.

1.1 Bayesian updating

Bayesian updating can be used to determine the sample size required to estimate Cohen’s
d or Pearson’s correlation with a certain precision. Precision is presented in the form of a
95% highest density credible interval (HDCI), that is, the narrowest possible interval that is
believed to contain the true value of the parameter of interest with a probability of .951. The
narrower this interval, the higher the precision with which the parameter is estimated.

Bayesian updating as implemented here relies on the assumption that a priori, that is, before
collecting the data, each possible value of the parameter of interest is equally likely. This has
two implications. First, the HDCI is completely determined by the data and not by prior
information. Secondly, the numerical values of the estimate and endpoints of the HDCI are
equal to the estimate and endpoints of the classical confidence interval.

1In statistical terms: the HDCI contains 95% of the marginal posterior density of the parameter which is a
function of the information in the data and prior knowledge with respect to the parameter.
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Bayesian updating can be used to determine the smallest sample size for which the resulting
HDCI does not contain the value zero. Bayesian updating consists of four steps:

1. Determine the maximum achievable size of the sample.

2. Collect the data for an initial number of participants and then compute the estimate and
HDCI. The actual number chosen is irrelevant, but with 20 participants the estimate and
HDCI will usually give a first impression of the size of Cohen’s d or Pearson’s correlation
that is not totally determined by sample fluctuations and/or outliers.

3. Add several participants to the sample (updating) and recompute the estimate and
HDCI.

4. If the HDCI still contains the value zero and the maximum achievable sample size has
not been obtained, return to the previous step. Otherwise, the updating is finished and
estimates and corresponding HDCI’s are reported.

1.1.1 The highest density credible interval (HDCI)

It is important to highlight that the HDCI is not a confidence interval. If many data sets
are sampled from the population of interest and each data set is used to compute the 95%
confidence interval for the parameter of interest, then it holds that 95% of the intervals contain
the true value. However, in contrast to HDCIs, confidence intervals cannot be updated because
their coverage level will become smaller than 95%. This will be illustrated using a simple
example.

Imagine many researchers want to show that Cohen’s d is unequal to zero. Each of them
samples a data set with 𝑛 = 20 for each group from the population of interest (in which
Cohen’s d happens to equal zero). About 5% of the 95% confidence intervals do not contain
the value 0. These researchers will not continue their efforts; they have “shown” that “their”
effect is not zero. At this stage the Type I error rate is .05. However, the 95% remaining
researchers increase their power by updating their data with another 10 persons per group
and recompute their 95% confidence intervals of which about 2.8% (number determined using
simulation) does not contain the value 0. Therefore, the Type I error rate is increased to
5% + 2.8% = 7.8%, that is, the updating rendered 92.2% confidence intervals and not 95%
confidence intervals.

A HDCI should therefore not be interpreted in the context of many hypothetical data sets
sampled from the population of interest. The HDCI is computed using the observed data
at hand and is the shortest interval that is believed to contain the true value of Cohen’s d
with a probability of .95. When updating, the size of the data at hand becomes larger, the
information with respect to Cohen’s d increases, and therefore the width of the HDCI becomes
smaller. The HDCI summarizes the evidence in the data at hand with respect to the size of
Cohen’s d, which is different from a confidence interval which aims to control error rates under
(hypothetical) repeated sampling from the same population.
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1.2 Sample Size Determination

The procedure elaborated in this paper is Bayesian (because HDCIs are used) empirical (be-
cause existing data are used) sample size determination. We use an existing dataset of a
certain size, and for all sample sizes between a minimum (e.g., 𝑛 = 20) and maximum sample
size of the sample at hand we compute the HDCI. To account for the arbitrary order of the
participant in a data set, this is done for a set number of permutations, e.g., 1000, of the
participants in the data set. For each sample size, we then calculate the average HDCI of all
permutations. Considering both the average HDCI and the HDCI’s resulting from the differ-
ent permutations, will provide an estimate of the sample size needed to obtain a 95% HDCI
that excludes zero. The 95% HDCI for Cohen’s d was established through non-parametric
bootstrapping (Efron and Tibshirani 1994). Specifically, we resampled the current subset of
data 100 times and calculated Cohen’s d for the difference between variable x and variable
y each time. We then calculated the mean and standard deviations of Cohen’s d across the
100 resampled values. The 95% CI was determined by subtracting 1.96 times the standard
deviation of the Cohen’s d values from the mean Cohen’s d value, and by adding 1.96 times
the standard deviation of the Cohen’s d values to the mean Cohen’s d value.

To illustrate the current method, we can take a preview at Figure 1 C in the Results section.
The dataset used to construct HDCI’s for Cohen’s d consists of 149 participants from the
self-evaluation versus control contrast in the medial prefrontal cortex during a self-evaluation
task. In Figure 1 C the first 20 participants in each of 1000 permuted data sets are used to
compute the HDCI for Cohen’s d. Ten of these intervals are displayed in blue. As can be seen,
of the ten (of 1000) HDCIs displayed, four include the value zero. Consequently, fluctuations
in the order in which participants are sampled determine whether the HDCI contains the value
zero. This is summarized in Figure 2 C which shows that the probability that one of the 1000
HDCIs does not contain the value zero is about 0.6 for 𝑛 = 20. In Figure 1 C, it is shown in
the first interval displayed in purple that the average of the 1000 HDCI’s does not contain the
value zero. Therefore, although the average interval does not contain the value zero, we can
learn from the permutations that when using 20 participants it is still rather likely that the
resulting interval will include the value zero. This becomes much less likely for the samples of
46 and 72 participants. With these sample sizes neither the individual HDCIs nor the average
interval contain the value zero (see Figure 1 C). Additionally, the probability that an interval
does not contain the value zero equals 100% for 72 participants (see Figure 2 C). Therefore, a
sample size of 72 and higher will usually render intervals that do not contain the value zero.

An issue that sample size determination has in common with power analysis, is that the effect
size in the existing data set will very likely differ from the effect size in the population that will
be addressed in the study being designed. However, sample size determination does not suffer
from the fact that effect sizes reported in the literature tend to be inflated (like power analysis)
because effect sizes are straightforwardly computed from actual data. This also means that
compared to power analyses, fewer assumptions about the data to be collected are needed. On
the other hand, just like traditional power analyses, it is important to consider to what extent
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the existing data resemble the to be planned study. The determined sample size is therefore
an estimate of the required sample size. This estimate is valuable because it allows researchers
to plan their research project, can be reported in their research proposal or pre-registration,
and it may lead to the conclusion that the sample size needed cannot be achieved with the
resources that you have at your disposal. After planning, in the data collection phase, one
can also estimate the HDCI at regular intervals with incoming data. Based on the outcome,
additional data can be collected if needed or the researcher can decide that the precision of
the HDCI is sufficient, and no more data collection is required. This will be especially useful
in cases where resources are scarce, such as smaller studies conducted by individual research
labs, or to limit participant burden.

In the next section Bayesian empirical sample size determination will be exemplified and
discussed using different fMRI tasks from the BrainTime (Braams et al. 2014; Peters and
Crone 2017) and Self-Concept (Spaans et al. 2023; Cruijsen et al. 2023) data sets.

1.3 neuroUp R package

The code for Bayesian updating in this manuscript is implemented in the R language for
statistical computing (R Core Team 2023). We currently provide the neuroUp package at
the following location: https://github.com/eduardklap/neuroUp and via the Comprehensive
R Archive Network (CRAN): https://doi.org/10.32614/CRAN.package.neuroUp (E. Klapwijk,
Hoijtink, and Jongerling 2024). This package is built on several packages from the tidyverse
(Wickham et al. 2019), most notably ggplot2. The package can be installed using the R
command: install.packages("neuroUp"). All data used in the current manuscript are
also available within the neuroUp package, in this way all figures in the manuscript can be
reproduced using the R package. See Box 1 for a description of the usage of the package, and for
a more elaborate introduction to neuroUp and its functions, please refer to https://eduardklap.
github.io/neuroUp/articles/neuroUp.html. To cite package neuroUp in publications use E.
Klapwijk, Hoijtink, and Jongerling (2024).

A reproducible version of this manuscript including associated code notebooks is available
here: https://eduardklap.github.io/sample-size-fmri/. The code notebooks are also presented
as supplementary data for this article. A CODECHECK (Nüst and Eglen 2021) certificate
is available confirming that the computations underlying this article could be independently
executed: https://doi.org/10.5281/zenodo.13945051 (Röseler 2024).

2 Method & Materials

We focus on sample size estimation for regions of interest from four different fMRI tasks in two
different samples (see Table 1). We re-used data that has been processed with SPM8 or SPM12
and derived summary statistics for individual participants for regions and task conditions of
interest (see fMRI processing).
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Table 1: Overview of tasks processed in the current study.

task source
associated
papers N

age
range

cognitive
process

region of
interest

Feedback BrainTime study,
Leiden University

(Peters and
Crone 2017;
Crone,
Duijvenvoorde,
and Peper 2016)

271 8-25
yrs

feedback
learning

DLPFC

Gambling BrainTime study,
Leiden University

(Braams et al.
2014; Crone,
Duijvenvoorde,
and Peper 2016)

221 12-28
yrs

reward-
processing

NAcc

Self-
evaluations

Self-Concept study,
Leiden University

(Cruijsen et al.
2023; Crone et al.
2022)

149 11-21
yrs

self pro-
cessing

mPFC

Vicarious
charity

Self-Concept study,
Leiden University

(Spaans et al.
2023; Crone et al.
2022)

156 11-21
yrs

vicarious
rewards

NAcc

2.1 Data and processing

2.1.1 BrainTime study

The BrainTime study is an accelerated longitudinal research project of normative development.
A total of 299 participants between ages 8 and 25 years took part in MRI scanning at the first
time point. At the second time point approximately 2 years later, 254 participants were
scanned (most dropout was due to braces, 𝑛 = 33). At time point 3, approximately 2 years
after time point 2, 243 participants were scanned (dropout due to braces: 𝑛 = 11). The same
Philips 3T MRI scanner and settings were used for all time points. The following settings were
used: TR = 2200𝑚𝑠, TE = 30𝑚𝑠, sequential acquisition, 38 slices, slice thickness = 2.75𝑚𝑚,
field of view (FOV) = 220 × 220 × 114.68𝑚𝑚. A high-resolution 3D T1 anatomical scan was
acquired (TR = 9.76𝑚𝑠, TE = 4.59𝑚𝑠, 140 slices, voxel size = 0.875 × 0.875 × 1.2𝑚𝑚, FOV
= 224 × 177 × 168𝑚𝑚).

2.1.1.1 Feedback task

For the feedback task (Peters et al. 2014) we included 271 participants at time point 1 from
which region of interest data was available. We use the same data and processing as reported in
(Peters and Crone 2017). During the task, on each trial participants viewed three squares with
a stimulus presented underneath. Participants were instructed to use performance feedback to
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determine which stimulus belonged to which square. After each choice, feedback was presented
to the participant: a minus sign for negative feedback or a plus sign for positive feedback. After
12 trials, or when a criterion was reached (placing each of the three stimuli in the correct box
at least two times), a new sequence with three new stimuli was presented. This criterion
was used to strike a balance between the number of trials in the learning and the application
phase. There were 15 sequences in total, resulting in a maximum of 15𝑥12 = 180 trials per
participant. For the current study, we focused on the learning > application contrast, which
compares feedback early in the learning process with feedback for associations that were already
learned (i.e. application phase). Individual trial-by-trial analyses were used to determine the
learning and application phase (see Peters and Crone (2017) for details).

2.1.1.2 Gambling task

For the Gambling task (Braams et al. 2014), we used data from 221 participants at time
point 3 (we went for the largest sample size and this was the time point with the most data
available for the contrasts of interest). We use the same data and processing as reported in
Schreuders et al. (2018). In the Gambling task, participants could choose heads or tails and
win money when the computer selected the chosen side of the coin or lose money when the
opposite side was selected. Chances of winning were 50%. To keep participants engaged, the
number of coins that could be won or lost on varied across trials. Participants were explained
that the coins won in the task would translate to real money, to be paid out at the end of
the experiment. Gambling was performed in two different conditions: participants played 23
trials for themselves, and 22 trials for their best friend. For the current study, we focused on
reward processing by analysing the winning for self > losing for self contrast.

2.1.2 Self-Concept study

The Self-Concept study is a cohort-sequential longitudinal study in which 160 adolescents
from 11 to 21 years old took part at the first time point (see https://osf.io/h7u46 for study
overview). MRI scans were acquired on a Philips 3T MRI scanner with the following settings:
TR = 2200𝑚𝑠, TE = 30𝑚𝑠, sequential acquisition, 37 slices, slice thickness = 2.75𝑚𝑚, FOV =
220 × 220 × 111.65𝑚𝑚. A high-resolution 3D T1 anatomical scan was acquired (TR = 9.8𝑚𝑠,
TE = 4.6𝑚𝑠, 140 slices, voxel size = 0.875 × 0.875 × 1.2𝑚𝑚, FOV = 224 × 178.5 × 168𝑚𝑚).

2.1.2.1 Self-evaluations task

For the Self-evaluation task we used the same data and processing as reported in Cruijsen et al.
(2023). In this task, participants read 60 short sentences describing positive or negative traits
in the academic, physical, or prosocial domain (20 per domain; 10 with a positive valence and
10 with a negative valence). Here we focus on the direct self-evaluation condition, in which
participants had to indicate to what extent the trait sentences applied to them on a scale of
1 (‘not at all’) to 4 (‘completely’). In the control condition, participants had to categorize
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20 other trait sentences according to four categories: (1) school, (2) social, (3) appearance,
or (4) I don’t know. For the current study, we focused on the direct self-evaluation versus
control contrast. Eleven participants were excluded due to excessive motion during scanning
( 3𝑚𝑚, 𝑛 = 8), not completing the scan (𝑛 = 1), and a technical error (𝑛 = 2), resulting in a
total sample of 𝑁 = 149.

2.1.2.2 Vicarious Charity task

For the Vicarious Charity task, we used the same data and processing as reported in Spaans
et al. (2023). In this task, participants could earn money for themselves and for a self-chosen
charity they selected before scanning. On every trial, participants could choose one of two
curtains to open. After their button press, the chosen curtain opened to show the division of
the stake between themselves and the charity. The overall outcome was a division of either
€4 or €2 between parties. Unknown to the participant, every outcome condition occurred 15
times during the task. Participants were informed beforehand that they received extra money
based on the average of three random outcomes at the end of the research visit. Here we
focus on the self-gain > both-no-gain contrast. This contrast compares the 30 trials in which
participants gained the full €4 or €2 themselves (i.e., €0 for charity) against 15 baseline trials
in which no money was gained in total (i.e., €0 for self and €0 for charity). Two participants
were excluded from the analysis due to excessive movement during scanning (> 3𝑚𝑚), one
due to signal dropout in the SPM mask including the ventral striatum (this was assessed by
visual inspection of all individual SPM masks), and one due to a technical error, resulting in
a total of 𝑁 = 156.

2.1.3 fMRI analysis

FMRI analyses for all four tasks were performed using SPM (Wellcome Department of Cog-
nitive Neurology, London); SPM8 was used for the BrainTime data and SPM12 for the Self-
Concept data. The following preprocessing steps were used: slice timing correction, realign-
ment (motion correction), normalization, and smoothing (6 mm full-width at half maximum
isotropic Gaussian kernel). T1 templates were based on the MNI305 stereotaxic space. All
tasks have an event-related design and events were time-locked with 0 duration to the moment
of feedback presentation. Six motion regressors were added to the model. All other trials (i.e.,
trials that did not result in learning in the Feedback task or too-late trials) were modeled as
events of no interest. These events were used as covariates in a general linear model together
with a set of cosine functions that high-pass filtered the data. The least-squares parameter es-
timates of height of the best-fitting canonical hemodynamic response function (HRF) for each
condition were used in pair-wise contrasts. The contrast images were submitted to higher-level
group analyses. Region of interest analyses were performed with the MarsBaR toolbox (Brett
et al. 2002).
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2.1.3.1 Regions of interest

For the Feedback task, the atlas-based middle frontal gyrus was used as a region of interest
(Harvard-Oxford cortical atlas; thresholded at 50%; center-of-mass coordinates 𝑥 = −4, 𝑦 =
22, 𝑧 = 43). Extracted parameter estimates for this region were obtained in tabular format
from the authors of Peters and Crone (2017), with one value for the mean activation during
learning and one value for the mean activation during application for all participants. For
the Gambling task, the anatomical mask of the left nucleus accumbens was used as a region
of interest (Harvard-Oxford subcortical atlas; thresholded at 40%; 28 voxels included). Ex-
tracted parameter estimates for this region were obtained in tabular format from the authors
of Schreuders et al. (2018), with one value for the mean activation during winning and one
value for the mean activation during losing for all participants.

For the Self-evaluation task, the region of interest used was a mask of the left medial prefrontal
cortex (𝑥 = −6, 𝑦 = 50, 𝑧 = 4) based on a meta-analysis by Denny et al. (2012). Extracted
parameter estimates for this region were obtained in tabular format from the authors of Crui-
jsen et al. (2023), with one value for the mean activation during self-evaluation and one value
for the mean activation during the control condition for all participants. For the Vicarious
Charity task, the anatomical mask of the left nucleus accumbens was used as a region of
interest (Harvard-Oxford subcortical atlas; thresholded at 40%; center-of-mass coordinates
𝑥 = −10, 𝑦 = 12, 𝑧 = −7; 28 voxels included). Extracted parameter estimates for this region
were obtained in tabular format from the authors of Spaans et al. (2023), with one value
for the mean activation during gaining for self and one value for the mean activation during
no-gain for self and charity for all participants.

Box 1: Data processing using neuroUp
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The function estim_diff() helps to determine the sample size required to estimate
differences in raw means and Cohen’s d’s for multiple sample sizes with a certain precision.
Using the neuroUp package, we run the following code (with explanation below):

# set seed
set.seed(1234)

# Estimate differences (unstandardized and Cohen's d)
feedback_fig <- estim_diff(data = feedback,

vars_of_interest = c("mfg_learning",
"mfg_application"),

sample_size = 20:271,
k = 1000,
name = "A. Feedback DLPFC")

# plot figure 1a
feedback_fig$fig_cohens_d

The first step is to set a seed value to make sure we get the same results when re-running the
function (set.seed(1234)). Next, we store the outcomes of the estim_diff() function into
a new object that we call feedback_fig. For the feedback task, we provide the feedback
data set that comes with the neuroUp package as the data to be analyzed. As variables of
interest (vars_of_interest) we provide a vector containing the names of the variables to be
compared on their means (in our case, c("mfg_learning", "mfg_application")). Next,
sample_size is the range of sample size to be used (20:271 in our example), and k is the
number of permutations to be used for each sample size (1000) for the purpose of the current
manuscript. Finally, name is an optional title of the dataset or variables to be displayed with
the figures ("Feedback DLPFC" in our example). Once the estimations are ready (note: with
1000 permutations this may take more than 1 hour), in the final step the figure is plotted
(feedback_fig$fig_cohens_d). Subsequently, we run the same estim_diff() function for
the Gambling, Self-Evaluations, and Vicarious Charity data sets that are internal to the
neuroUp package. See the Supplementary notebooks for the code to create all figures and
results reported below.

3 Results

3.1 Task effects using Cohen’s d

The average HDCI was used to determine the optimal sample size for the four fMRI tasks
used. For each task and brain region of interest, we estimated the sample size required to
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obtain an average HDCI for Cohen’s d not containing the value zero (Figure 1 and Figure 2;
Table 3). Additionally, we also established whether it was also the case that a majority of the
1000 underlying HDCIs did not contain the value zero.

In Figure 1 A, an estimate of the required sample size for feedback learning processing in the
DLPFC (middle frontal gyrus) is presented. Five groups of HDCI’s are presented for sample
sizes of 20, 70, 120, 170, and 271 persons, in which 271 is the total group sample size of the
existing data set. As can be seen, already with a sample of 20 participants neither of the
10 permuted HDCIs displayed nor the average of the 1000 HDCI’s contain the value zero. In
Figure 2A it can be seen that the proportion of HDCI’s not containing the value zero is equal to
1.0. This is due to the huge effect size of Cohen’s d equal to about 1.9 (see Table 3). Therefore,
already with a sample size of 20 participants, an effect bigger than zero will be detected for
this task and brain region.

For the task effect of gambling (winning for self > losing for self contrast) in the NAcc, we
can see the results in Figure 1 B. Here, with a sample of 20 participants the average of the
1000 HDCIs does not contain the value zero but some of the 10 HDCI’s displayed do. The
proportion of HDCI’s not containing the value zero is bigger than 0.8 for 20 participants, but
with 60 or more participants none of the 1000 HDCI’s contain zero anymore (Figure 2B). This
is related to the large effect size of Cohen’s d equal to about 0.7 (see Table 3). Thus, for this
task and brain region, already with a sample size of 20 participants chances are high that an
effect bigger than zero will be detected. Using sample sizes of 60 or more participants from
this existing data set increases the chances of detection to 100%.

In Figure 1 C, results are plotted for the self-evaluation task in the mPFC. We see that at a
sample size of 20 some of the 10 HDCI’s displayed still contain the value 0, but not the average
of the 1000 HDCI’s. The proportion of HDCI’s not containing the value 0 is also below 1.0,
around 0.5, for this task at 𝑁 = 20 (Figure 2C). At the next step that is plotted for this task
(𝑛 = 46), we see that the proportion of HDCI’s not containing the value 0 is only a little below
1.0. Thus, for this task and brain region, at a sample size at 46 participants chances are high
that an effect bigger than zero will be detected.

The results of gaining for self in the NAcc are plotted in Figure 1 D. With a sample of 20
participants the average of the 1000 HDCI’s does not contain the value zero but some of the 10
HDCI’s displayed do. The proportion of HDCI’s not containing the value zero is around 0.75
(Figure 2D), but at 𝑛 = 47 the proportion of HDCI’s not containing the value 0 is almost 1.0.
Therefore, using 20 participants it is still likely that the resulting interval will include the value
zero. This becomes much less likely for the samples of 47 and 74 persons. With these sample
sizes neither the HDCIs nor the average interval contain the value zero. Additionally, the
probability that an interval does not contain the value zero almost reaches 100%. Therefore,
for this task and brain region, a sample size of 47 and higher will usually render intervals that
do not contain the value zero.

Source: Article Notebook

Source: Article Notebook
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Figure 1: Estimates of task effects for five different sample sizes (starting with 𝑁 = 20, then
1/5th parts of the total dataset). For each sample size 10 randomly chosen HDCI’s
out of the 1000 HDCI’s computed are displayed (in light blue). The average esti-
mate with credible interval summarizing the 1000 HDCI’s for each sample size are
plotted in reddish purple. DLPFC = dorsolateral prefrontal cortex; mPFC = medial
prefrontal cortex; NAcc = nucleus accumbens.

Source: Article Notebook

Source: Article Notebook
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Table 3: Mean estimates (with credible interval in brackets) of Cohen’s d for five different
sample sizes (starting with 𝑁 = 20, then 1/5th parts of the total dataset) of the 1000
HDCI’s. DLPFC = dorsolateral prefrontal cortex; mPFC = medial prefrontal cortex;
NAcc = nucleus accumbens.

task
brain
region 𝑛 = 20 𝑛 = 2/5 𝑛 = 3/5 𝑛 = 4/5 𝑁 = 𝑡𝑜𝑡𝑎𝑙

Feedback DLPFC 2.03 (1.29,
2.76)

1.89 (1.54,
2.25), n =
70

1.88 (1.62,
2.15), n =
120

1.87 (1.65,
2.1), n =
170

1.87 (1.69,
2.04), N =
271

Gambling NAcc 0.8 (0.25,
1.34)

0.74 (0.45,
1.03), n =
60

0.73 (0.51,
0.96), n =
100

0.73 (0.54,
0.92), n =
140

0.73 (0.58,
0.88), N =
221

Self-
evaluations

mPFC 0.5 (0.02,
0.98)

0.47 (0.17,
0.77), n =
46

0.46 (0.22,
0.7), n =
72

0.46 (0.26,
0.66), n =
98

0.46 (0.29,
0.62), N =
149

Gaining
self

NAcc 0.64 (0.14,
1.14)

0.59 (0.27,
0.91), n =
47

0.58 (0.32,
0.84), n =
74

0.58 (0.36,
0.8), n =
101

0.57 (0.39,
0.75), N =
156
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Figure 2: For each task, for five different sample sizes (starting with 𝑁 = 20, then 1/5th parts
of the total dataset), the proportion of intervals not containing the value 0 is plotted
in reddish purple.

Source: Article Notebook

3.2 Pearson correlations between task effects and age

For each task and brain region of interest we also estimated the sample size required to obtain
an average HDCI for Pearson’s correlation between regional fMRI task responses and age not
containing the value zero (Figure 3 and Figure 4; Table 4) for which a large proportion of the
1000 HDCI’s does not contain the value zero.

In Figure 3 A the results are shown for the Pearson’s correlation between age (children and
adolescents aged 8-25 years) and feedback learning processing in the DLPFC. As can be seen,
with a sample of 20 persons the average HDCI contains the value 0. Increasing the sample
size to 70 results in neither of the 10 HDCI’s displayed nor the average of the 1000 HDCI’s
containing the value 0. We can also see that the proportion of HDCI’s not containing the
value zero is less than 0.5 for 20 participants but equal to 1.0 for 70 participants (Figure 4 A).
Therefore, for a reliable estimate of the correlation between feedback processing in the DLPFC
and age, sample sizes bigger than 20 are needed.
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For the correlation between age and gambling in the NAcc, we can see the results in Figure 3
B. Here, for all plotted sample sizes both the average of the HDCI’s and all of the 10 HDCI’s
displayed do contain the value zero. The proportion of HDCI’s not containing the value zero
is below 0.1 for 20 participants, but with more participants almost all of the 1000 HDCI’s
contain the value zero (Figure 4 B). This is related to the very small correlation equal to
about -0.04 (see Table 4). Thus, for this task and brain region, it is unlikely that an effect
larger than zero will be detected for a correlation with age, even with the total sample size of
221 participants.

In Figure 3 C, results are plotted for the correlation between age and self-evaluation processing
in the mPFC. We see that for all plotted sample sizes both the average of the 1000 HDCI’s
and most of the 10 HDCI’s displayed do contain the value zero. In Figure 4 C, we also see
that the proportion of HDCI’s not containing the value 0 is well below 1.0 for all sample sizes
shown. Thus, for this task and brain region, with all available sample sizes the chances are
high there will be no effect detected that is larger than zero. The average Pearson correlation
is also small with a value around 0.13 (Table 4). The results for the correlation between age
and gaining for self in the NAcc are plotted in Figure 3D. We see that up to 104 participants
both the average of the 1000 HDCI’s and most of the 10 HDCI’s displayed do contain the value
zero. The proportion of HDCI’s not containing the value zero increases with bigger sample
sizes (Figure 4 A) but is still below 0.5 for 104 participants. Therefore, with 104 participants
it is still likely that the resulting interval will include the value zero. Therefore, for this task
and brain region, with all available sample sizes the chances are high there will be no effect
detected that is larger than zero. The average Pearson correlation is also relatively small with
a value around -0.18 (Table 4). If correlations of about -0.18 are considered relevant, the
conclusion might be that one could strive for a sample larger than 160.

Source: Article Notebook

Source: Article Notebook

Source: Article Notebook

Source: Article Notebook

Source: Article Notebook

Source: Article Notebook

Source: Article Notebook

Source: Article Notebook

Source: Article Notebook
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Figure 3: Estimates of Pearson’s correlation between age and the task effect for five different
sample sizes (starting with 𝑁 = 20, then 1/5th parts of the total dataset). For
each sample size 10 randomly chosen HDCI’s out of the 1000 HDCI’s computed
are displayed (in green, permutation numbers used are displayed to the right of each
subfigure). The average estimate with credible interval summarizing the 1000 HDCI’s
for each sample size are plotted in orange. DLPFC = dorsolateral prefrontal cortex;
mPFC = medial prefrontal cortex; NAcc = nucleus accumbens. Age is modeled as
linearly increasing or decreasing.

Source: Article Notebook

Source: Article Notebook
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Table 4: Mean estimates (with credible interval in brackets) of Pearson’s correlation between
age and the task effect for five different sample sizes (starting with 𝑁 = 20, then 1/5th
parts of the total dataset) of the 1000 HDCI’s. DLPFC = dorsolateral prefrontal
cortex; mPFC = medial prefrontal cortex; NAcc = nucleus accumbens.

task
brain
region 𝑛 = 20 𝑛 = 2/5 𝑛 = 3/5 𝑛 = 4/5 𝑁 = 𝑡𝑜𝑡𝑎𝑙

Feedback DLPFC 0.38
(-0.06,
0.69)

0.38 (0.16,
0.56), n =
70

0.37 (0.21,
0.52), n =
120

0.38 (0.24,
0.5), n =
170

0.38 (0.27,
0.47), N =
271

Gambling NAcc -0.02
(-0.44, 0.4)

-0.04
(-0.29,
0.21), n =
60

-0.04
(-0.23,
0.16), n =
100

-0.04 (-0.2,
0.13), n =
140

-0.04
(-0.17,
0.09), N =
221

Self-
evaluations

mPFC 0.07
(-0.36,
0.48)

0.06
(-0.23,
0.34), n =
46

0.06
(-0.17,
0.29), n =
72

0.06
(-0.14,
0.25), n =
98

0.06 (-0.1,
0.22), N =
149

Gaining
self

NAcc -0.18
(-0.56,
0.26)

-0.17
(-0.44,
0.11), n =
47

-0.17
(-0.38,
0.06), n =
74

-0.17
(-0.35,
0.03), n =
101

-0.17
(-0.31,
-0.01), N
= 156
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Figure 4: For each task, for five different sample sizes (starting with 𝑁 = 20, then 1/5th parts
of the total dataset), the proportion of intervals not containing the value 0 is plotted
in orange. Age is modeled as linearly increasing or decreasing.

Source: Article Notebook

4 Discussion

In this paper we tested how existing data can be used to approximately determine the sample
size that is required for a new study that is being planned. The approach presented has been
illustrated using four existing fMRI studies where Cohen’s d is the effect size of interest and
four studies where a Pearson correlation for linear age is of interest. Additionally, it has been
elaborated that Bayesian updating can be used to deal with the fact that the required sample
size can only approximately be determined.

Our results show that calculating and plotting HDCI’s can be helpful in determining at what
sample sizes task effects become more stable. We illustrated with four examples how re-
searchers can get an indication of the required sample size if they plan to execute a study that
uses feedback learning, reward-processing (two examples), or self-processing. For all effects
under study, the width of the HDCI became smaller with larger sample sizes, showing that
the precision of the estimation increased with more data. At what sample size estimations
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seemed to stabilize for general contrasts (e.g., feedback processing versus rule application; re-
ward versus loss) differed per task and region of interest. For example, the effects in the middle
frontal gyrus during feedback processing were the strongest of the effects studied here. There,
even for sample sizes of 20 participants, task effects clearly differed from zero for the middle
frontal gyrus. But even for such a strong effect, at higher sample sizes the results became
more stable (i.e., less variability in subsamples of the total dataset). For the other three tasks,
the HDCI’s still contained the value zero with 20 participants but at higher sample sizes of
40-60 participants chances are very high that an effect larger than zero will be detected.

The results are different for the Pearson correlation between linear age and task effects, as can
be seen in Figure 3 and Figure 4. Here again the results of the middle frontal gyrus during
feedback processing were the strongest. But even for such a strong effect, the sample size
needed to estimate the correlation with age is much higher than the sample size needed to find
a stable task effect. For the Pearson correlation, only at a sample size of 𝑁 = 70 or more the
lower bound of the credible is above zero, suggesting that one can be confident that there is a
positive Pearson correlation.

For the correlation between linear age (between 12-28 years) and reward-processing in the
NAcc, the results were dependent on the specific task context. In a gambling task with the
contrast reward versus loss, even with a sample size of 221 the average HDCI contains the
value zero when testing for linear age effects. We found that the average Pearson correlation
is -.04 for this effect, which is so small that it is likely irrelevant. In contrast, for rewards in a
vicarious reward context with the contrast reward versus no reward, probability of a positive
Pearson correlation with negative age increased with larger sample sizes and the average CI
did just not contain zero using the full sample size of 156 (𝑀 = −0.17; 95%𝐶𝐼[−0.31, −0.01]).
Note that we only tested for linear age effects, whereas prior studies reported that reward
processing may be best described by non-linear effects (Braams et al. 2014); which should
be tested in future extensions of the approach illustrated here. The results described for the
linear age effects are in line with simulation studies suggesting that typically in psychology
relatively large sample sizes of 𝑁 = 150 to 𝑁 = 250 (Schönbrodt and Perugini 2013) are
needed to obtain a study that is sufficiently powered to evaluate a Pearson correlation with
age or psychological variables.

There are different ways in which the methods described here could be put to practice. When
planning to use an existing task for follow-up or replication research, existing data can be used
to provide an educated guess of the sample size that is needed in the new study (given that
the new samples resemble the existing sample). When doing so, it is important to keep in
mind that there will always be differences in study execution that might influence the required
sample size (e.g., differences in task presentation, scan parameters, number of trials) (Bennett
and Miller 2013; Chen et al. 2022). In those cases, it is up to the researcher to decide to what
extent the existing studies resemble the study they are planning. This means that instead of
providing a definitive answer about the number of participants needed, our approach serves as
a tool that helps estimating the sample size. In this way new task-related fMRI studies will
likely be properly powered, even if these are small-scale studies from individual labs. Even in
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the current era of large-scale consortium studies, there remains the need to conduct studies
with more modest sample sizes. Such studies can help to balance between methodological
robustness of well-established experiments and experimental design novelty. These data sets
could complement large, public data sets with more idiosyncratic tasks and specific samples.
Furthermore, sample size determination using existing data can be combined with Bayesian
updating when collecting new data for a new research project. The following steps can be
used:

1. Execute Bayesian empirical sample size determination. This will render an estimate of
the sample size needed for an adequately powered study.

2. Execute the planned study with the sample size determined in the previous step.

3. Compute the effect size of interest (e.g., Cohen’s d or Pearson’s correlation) and the
corresponding HDCI.

4. Evaluate the HDCI:

a. If the HDCI does not contain the value zero, your study is finished.

b. If the HDCI does contain the value zero, there are two options:

i. If the estimate of the effect size is close to zero, the effect size is small. Adding
more data (updating) may (or may not) render an HDCI that does not contain
the value but will very likely still render an effect size that is so small that it
is irrelevant.

ii. If the estimated effect size is relevant in the context of the study being executed,
it may very well be (but there is no certainty) that collecting additional data
(updating) will render a HDCI that does not contain the value zero. If you
have the resources, it may be worthwhile to collect additional data and return
to Step 3). If you do not have the resources, your study is finished.

In this paper the focus was on Cohen’s d and the Pearson correlation using cross-sectional
data, however, the approach presented can straightforwardly be generalized to other statisti-
cal models and effect size measures. A relatively simple example is quadratic regression with
either Spearman’s correlation or the multiple correlation as the effect size measure, but gener-
alizations to more complex statistical models such as multilevel models applied to longitudinal
data are conceivable. One specifically interesting avenue would be a combination of Bayesian
updating and power contours (Baker et al. 2021) to consider the combined effect of the num-
ber of participants tested and number of trials per participant (Chen et al. 2022). Arguably,
in more complex statistical models our approach may succeed where classical power analysis
may very well fail. The reason for the latter is that in power analysis “the effect size” has
to be specified. In, for example, structural equation models, this implies that factor loadings,
regression coefficients and (co)variances have to be specified. Doing this such that the spec-
ification represents a certain “effect size” is at least difficult and maybe even impossible. In
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our approach effect sizes do not have to be specified but are straightforwardly estimated using
existing data. The latter is usually easy and straightforward. Therefore, in an era of open
science in which data sets are increasingly available for re-use (also for sample size determi-
nation) there is much potential for the approach presented in this paper (see Box 2 for more
example use cases).

Box 2: Use cases
Example case 1: reward learning task main effect
In this box, we illustrate the use of this method in a data set that is not from our own lab as
an additional use case. We provide an example of a researcher who is planning a new study
in which the researcher is interested in the main effect of reward versus no-reward conditions
in the caudate nucleus during a reward learning task. For this example, we used existing
data from Calabro et al. (2023) for 232 participants in total (including additional
developmental data), with permission from the authors. In the first step we run the
estimations, which suggest that we should aim for a sample size of at least 104 participants,
because in this case all estimations are above zero. As can be seen in the figures below,
estimations become more robust at 𝑛 = 146 and 𝑛 = 232 but the advantage of more data
above 𝑛 = 146 is relatively small.

Source: Article Notebook
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In the following step, the researcher starts the new study with the sample size determined
using existing data with a comparable paradigm. This means the researcher can administer a
(new) reward learning task in a sample of 104 participants.
The researcher computes the HDCI’s for the new data. In case most of the permutations do
not contain the value zero, data collection can be finished. However, it is also possible to
collect additional data in case the new results are less robust; in this case the HDCI’s can be
computed again with more data. Taken together, the method presented here provides a valid
estimate of the required sample size for starting a new study.
Example case 2: reward learning task age effect
In case a researcher is interested in correlations with age or other predictor variables (e.g. IQ
or SES), the procedure should be performed again with the predictor variable included. Using
the data from Calabro et al. (2023), we provide an example of a researcher who is planning a
new study in which they are interested in the relationship between age and the parametric
association between caudate nucleus activation and reward prediction error (for which we
have one value per participant). In the first step we run the estimations, which suggest that
in case we are interested in linear age effects, we should aim for a sample size of at least 146
participants. As can be seen in the Figures below, at 𝑛 = 146 the HDCI’s contain zero for a
large proportion of the permutations. This suggests that for more robust correlational effects,
it is therefore recommended to include at least 146 participants in a new study.
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4.0.1 Practical recommendations

When calculating HDCI’s using existing data, we should keep in mind that the determined
sample size is only an indication of the sample size required for the new study. In the new
study the unknown effect size (Cohen’s d or Pearson’s correlation) may be smaller or larger
than in the existing study and therefore a somewhat smaller or larger sample size may be
required. This can be accommodated using Bayesian updating in the data collection phase
with the determined sample size as the point of departure. The HDCI can be estimated at
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regular intervals with incoming data, which can help to determine whether additional data
are needed or not. It is also important to consider how one can determine the resemblance of
a “to be planned study” to the existing study. Although this is a subjective evaluation, it is
probably wise to be mindful of different factors that can influence the strength of the effect,
such as task domain, number of trials, scan parameters, region of interest, and modality (e.g.,
visual versus verbal) (Bennett and Miller 2013; Elliott et al. 2020; Herting et al. 2018). In
case of correlational studies, the range of the independent variable such as age should also be
considered. One can undersample from the existing data at hand, in case the age range of
interest of the planned study falls within that range. But when the age range of interest is
wider than the range of the data at hand, extrapolation of the estimates to the new sample
should be done with caution.

Carefully considering the differences in study design between existing and planned studies is
also important for cases where the ultimate consequence of the sample size estimation might
be that one should not execute the planned study. For example, if a study resembles study
B in Figure 3, it is to be expected that the effect size for linear correlations with age (if one
expects a linear and not a non-linear effect) is so small that either it is irrelevant, or unrealistic
large sample sizes are required to obtain an average HDCI that does not contain zero. But
even in this situation, it depends on the context whether something is a meaningful small effect
or a negligible small effect (see for further discussions Dick et al. (2021) and Funder and Ozer
(2019)). One might still decide to continue the study when there is evidence that the small
effect at hand is meaningful, for example because cumulatively it can lead to larger effects in
the longer run. If the effect is yet deemed irrelevant, one could choose not to collect new data,
or one could alternatively take a bet to pilot a novel version of a similar task that might lead
to a stronger effect. Bayesian updating can then be used to estimate the HDCI’s again after
a small number of participants. If the average effect is still close to zero one might conclude it
is probably better to use a different paradigm or to focus on other aspects of the study.

In conclusion, in this paper we demonstrate that the current HDCI approach may be a helpful
tool in planning a study. The quantification of the required sample is most valid if the existing
study characteristics and study samples are comparable to the planned study. Yet, in most
cases (apart from direct replications), new research is carried out to discover something new
by implementing a variation of a task in a new sample or setting. Our approach can then also
be used to monitor the precision of the estimates and compare it with the existing data set (by
plotting the estimates at certain predetermined sample size intervals). That is also another
way in which the approach can be used for the interesting cases in which a totally new task
is used. Together, we aimed to present a user-friendly open source tool to determine sample
sizes based on existing data for paradigms that were validated in previous research, or in the
process of data collection in case the study tests scientific questions using novel paradigms.
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